Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 250: 108165, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38631131

RESUMO

BACKGROUND AND OBJECTIVE: Magnetic resonance imaging (MRI) can provide rich and detailed high-contrast information of soft tissues, while the scanning of MRI is time-consuming. To accelerate MR imaging, a variety of Transformer-based single image super-resolution methods are proposed in recent years, achieving promising results thanks to their superior capability of capturing long-range dependencies. Nevertheless, most existing works prioritize the design of transformer attention blocks to capture global information. The local high-frequency details, which are pivotal to faithful MRI restoration, are unfortunately neglected. METHODS: In this work, we propose a high-frequency enhanced learning scheme to effectively improve the awareness of high frequency information in current Transformer-based MRI single image super-resolution methods. Specifically, we present two entirely plug-and-play modules designed to equip Transformer-based networks with the ability to recover high-frequency details from dual spaces: 1) in the feature space, we design a high-frequency block (Hi-Fe block) paralleled with Transformer-based attention layers to extract rich high-frequency features; while 2) in the image intensity space, we tailor a high-frequency amplification module (HFA) to further refine the high-frequency details. By fully exploiting the merits of the two modules, our framework can recover abundant and diverse high-frequency information, rendering faithful MRI super-resolved results with fine details. RESULTS: We integrated our modules with six Transformer-based models and conducted experiments across three datasets. The results indicate that our plug-and-play modules can enhance the super-resolution performance of all foundational models to varying degrees, surpassing the capabilities of existing state-of-the-art single image super-resolution networks. CONCLUSION: Comprehensive comparison of super-resolution images and high-frequency maps from various methods, clearly demonstrating that our module possesses the capability to restore high-frequency information, showing huge potential in clinical practice for accelerated MRI reconstruction.

2.
Med Phys ; 48(12): 7864-7876, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716711

RESUMO

PURPOSE: With the continuous development of deep learning based medical image segmentation technology, it is expected to attain more robust and accurate performance for more challenging tasks, such as multi-organs, small/irregular areas, and ambiguous boundary issues. METHODS: We propose a variance-aware attention U-Net to solve the problem of multi-organ segmentation. Specifically, a simple yet effective variance-based uncertainty mechanism is devised to evaluate the discrimination of each voxel via its prediction probability. The proposed variance uncertainty is further embedded into an attention architecture, which not only aggregates multi-level deep features in a global-level but also enforces the network to pay extra attention to voxels with uncertain predictions during training. RESULTS: Extensive experiments on challenging abdominal multi-organ CT dataset show that our proposed method consistently outperforms cutting-edge attention networks with respect to the evaluation metrics of Dice index (DSC), 95% Hausdorff distance (95HD) and average symmetric surface distance (ASSD). CONCLUSIONS: The proposed network provides an accurate and robust solution for multi-organ segmentation and has the potential to be used for improving other segmentation applications.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...